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The int,eraction of weakly nonlinear waves with slowly varying boundaries is 
considered. Special emphasis is given to rotating fluids, but the analysis applies 
with minor modifications to waves in stratified fluids and shallow-water waves. 
An asymptotic solution of a variant of the Korteweg-de Vries equation with 
variable coefficients is developed that produces a ‘Green’s law’ for the amplifica- 
tion of waves of finite amplitude. For shallow-water waves in water of variable 
depth, the result predicts wave growth proportional to the - &  power of the 
depth. 

1. Introduction 
Interactions between long waves in incompressible fluids with slow and weak 

variations of geometrical constraints are studied in this paper. It has been shown 
by Benjamin (1967)) Benney (1966) and Leibovich (1970) that the Korteweg- 
de Vries equation governs inviscid long waves in rotating fluids contained in 
cylindrical tubes, and in stratified fluids between parallel walls. Other examples 
of continuous fluid flows that are governed by this equation are known, the most 
famous of which is the propagation of long waves in shallow water with a 
horizontal bottom, for which it was first introduced by Korteweg & de Vries 
(1895). The nonlinear shallow-water wave problem with sloping bottom has been 
the subject of much work (see, for example, Peregrine 1967; Madsen & Mei 
1969), but nearly always starting with a system of equations much more com- 
plicated than the Korteweg-de Vries equation. Results from these investigations 
were of necessity primarily numerical and therefore special. 

Recently Kakutani (1971) has shown that a modification of the Korteweg-de 
Vries equation can describe shallow-water wave propagation over gently sloping 
bottoms.? In  this paper, we derive an equation of the same form to describe 
weakly nonlinear long-wave propagation in rotating streaming fluids contained 
in circular tubes of variable area. The area changes are assumed to be small and 
to occur over distances large compared with a wavelength of the disturbance. 
This paper therefore extends the results of Leibovich (1970). Aprecisely analogous 
derivation can be carried out (cf. Randall 1972) for the case of stratified fluids 
between non-parallel walls, and for other similar situations. The analysis of the 

A paper by Johnson (1972) appeared after this work was submitted for publication. 
Reference is made there to a forthcoming publication by Johnson in which a single modified 
Korteweg-de Vries equation is derived to describe this problem. We have not seen the 
cited paper. 
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present paper, although carried out in detail in a special context, therefore is 
expected to apply to a considerably wider class of problems. 

An important distinction, not revealed by the earlier work of Benjamin (1967) 
and Leibovich (1970), between critical and non-critical flows (in the sense of 
Benjamin 1962) is found to be necessary. In  critical flows a linear solution is 
not possible, and nonlinear effects must be included from the start. This be- 
haviour has parallels in other problems of fluid motion and is discussed in $3 .  
Although the equations describing both non-critical and critical flows are derived 
here, only the non-critical case is treated in detail. The critical case, which may 
need to involve viscous effects as discussed in $ 5, is the subject of the adjacent 
companion paper (Randall & Leibovich 1973). 

Wave propagation in both critical and non-critical flows is described by an 
equation of the form 

(with suitably scaled distance X ,  time T and disturbance U ) ,  where the coefficients 
A, /3 and p are slowly varying functions of X and T .  Kakutani’s (1971) equation is 
of this form, as is an equation found by Leibovich & Randall (1971) in a dif- 
ferent context. Amplification or decay occurs depending upon whether y is 
positive or negative. When ,u is positive, and pT large, the amplifying solution 
displays ‘terminal similarity ), with the dominant contribution being of solitary- 
wave form, but with exponentially growing amplitude: 

U = aseche( [-] ha a ( X + ~ A ~ o T a d T ‘ ) ) ,  

12P 
where a = a,exp ($j,udT). 

(The same form of solution is obtained by Ott  & Sudan (1970) for the damped 
case with y small and negative, and T large.) Computer solutions of the initial- 
value problem for the full equation (with constant A ,  ,8 and p) corroborate the 
asymptotic result. 

The terminal similarity solution evaluated for Kakutani’s (197 1) equation 
yields 

for shallow-water waves, where His the local depth of the water. This compares 
with ‘Green’s law’ (Lamb 1932) for infinitesimal waves of extreme length in 
which the exponent is a. 

a = ao(Ho/rr)* 

2. Formulation 
An axially symmetric, concentrated vortex flow of an incompressible fluid 

is assumed to occur in a tube of slowly varying area. In  focusing upon the effect 
of tube walls, we tacitly assume that the core region of vorticity centred around 
the z axis occupies a non-negligible volume of the tube. Thus, the tube wall 
radius (with a typical value b )  is a modest multiple of the core radius, and b 
will be chosen as reference for radial distance ( r ) .  Waves with a length scale 
1 = b/K, K < 1, are of interest, and 1 is chosen as reference for axial distance (2). 
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Small changes of order 6 in tube area are assumed to occur on a much longer scale 

Velocities are made dimensionless by comparison with the maximum azimuthal 
velocity V, in the undisturbed flow and time with 11%. The area-like co-ordinate 
y = r2/b2 is more convenient than radius. 

In  terms of the stream function Y (radial velocity u = -r-lYS and axial 
velocity w = y-lYr) and ' circulation ' I? (azimuthal veiocity w = r-lr) the govern- 
ing equations for laminar flow of a fluid with constant kinematic viscosity v may 
be written as follows: 

L = l/a, a 6 1. 

D ~ Y ~  + ~ Y ? , D ~ Y ? ~  + 2y-lrrZ - 2 y ~ z [ y - w ~ 1 ,  = ,my, 
rt + 2 ~ ,  rz - 2 y p ,  r, = po2rr, 

02 4ya21ay2 + K 2 a y a Z 2 ,  

p V / & b K .  

The 'support flow' is defined as that portion of the flow that would occur in 
the absence of waves. It develaps with axial distance owing to impressed wall 
effects over distances comparable with Z/a and to viscous effects over distances 
comparable with di,E. 

In  this paper., we take a 9 ,E, so that the changes in the support flow are 
dominated by wall geometry. I n  effect then, the support flow is treated as 
inviscid. We shall be interested, however, in waves whose position may not vary 
greatly from a fixed wall Iucation. Viscosity may, over a long period of time, 
affect the wave motion. Viscous terms in (1) will therefore be restored when 
needed to describe wave damping. 

Let x: = az, and let the tube wall be located at Y = 1 +6h(x), where h is a pre- 
scribed function of bounded variation. It is known (Benjamin 1967; Leibovich 
1970) that waves of finite amplitude measured by E = O ( K ~ )  are possible in 
a straight tube Y 3 1. Assuming that such waves have formed a straight section, 
the effects of varying Y are sought. Hence we shall assume c = at the outset. 

We postpone consideration of viscous effects until $ 5 .  The boundary con- 
ditions appropriate to an inviscid flow are 

Y ( O , z , t )  = 0 and Y?(l +6h(x),~,t) = Q, (2) 

where the constant Q is the volumetric flow rate. We assume that Y has a Taylor 
series expansion about 6 = 0, which then permits a transfer of the second 
boundary condition to the cylinder y = I by the formula 

Three small parameters have been introduced for inviscid flows. They axe 01, 

which represents the slowness of the change in tube area with axial distance; 
6, which represents the small total variation of the tube area; and 6, which repre- 
sents the amplitude of the assumed wave motion that is the subject of our 
investigation. 

31-2 
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3. The linearized problem: critical and non-critical flows 
If E = S = 0,  it  is seen from the inviscid (ji = 0 )  form of (1) that a steady 

cylindrical flow is possible, with arbitrary axial velocity W(y) and arbitrary 
circulation rs(y). We assume that W and rs are given, and represent a flow stable 
to axisymmetric disturbances, which is anticipated provided that the Howard- 
Gupta (1962) stability criterion is met. Writing 

and 

then substituting into (l), (2) and (3) we find that 
= F,(Y) + ErO(Y, 2, t )  + Sr,(Y, 2 )  

s,' ~W(Y) d~ = Q- 
If To and rl are then eliminated, the perturbation stream functions are seen to 
be determined by 

} (4) 

I (5) 

I (7)  

%Gtt + 2w11.;zt + w2$:zz - w " W 0 t z  + W$omI+ c~Sr:/2Y2) $ozz = 0, 

kO(O,Z, 0 = k O ( l , Z ,  t )  = 0, 

w2$L2 - ww"klz3 + (rs G/2Y2) $1m = 0, 

where we have used primes to denote differentiation with respect to y, and 

@AO, 4 = 0, @ , ( l , Z )  = - 2 W (  1) h(x). 
The problem represented by (4) has a solution of the form 

y o  = QO(Y)42,t), 

where A, = -coA, (6) 
and &fi0 I 4; + ( w - c o p  [rs r;/2Y2 - ( w - co) WN-J 4o = 0, 

40(0) = 4 0 ( 1 )  = 0, 
with co a constant. With W and I?, specified, co may be regarded as the eigenvalue 
emerging from problem (7). Of course (6) merely implies that A = A(z -co t ) .  
Since the support flow is assumed to be stable, at least two values of co, one 
less than the minimum W and the other greater than the maximum of W ,  are 
assured by a theorem of Chandrasekhar (1961, (7, 8 b ) ) .  If W itself does not 
vanish, then the only possible singular point of (7) occurs at  y = 0. To assure 
the existence of regular solutions in (0, 1), it is assumed that r,(O) = 0, a condition 
always met by real vortices. Problem ( 5 )  has a solution of the form 

$1 = 4(Y) h ( 4 ,  
cL2[~e,1 h,, = aye; + w-yr, r;/2y2 - vw7 el> h,, = 0. with 

To O(S), the differential equation for ?,bl is satisfied for arbitrary MB,, since the 
derivatives with respect to z show that the expression above is of order 6a2. 
Consideration of higher order terms (specifically, the O(Sa) contribution to $ 
and F) shows, however, that the perturbation is not ordered unless M8, vanishes. 
The problem for 8, is therefore 

NO, = 0, 8,(0) = 0, el( 1) = - i W (  1). (8) 
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If the least eigenvalue c, is negative, the flow is said to be subcritical, and if 
positive it is said to be supercritical (Benjamin 1962). Snbcritical flows permit 
upstream propagation (or c, < 0) and supercritical flows do not. The dividing 
case of c, = 0 is said to be critical. We shall always regard co as the least eigen- 
value of (7). 

In  the case of critical flow, the operators L and M are identical. Since (7) is 
associated with homogeneous boundary conditions and (8) with inhomogeneous 
conditions, there cannot be a solution for both 4, and O1 in critical flow. For 
non-critical flows, this difficulty does not arise, nor does it occur for S = 0, which 
is the only case specifically treated in the literature. 

Critical flows in other contexts are known to exhibit singular behaviour. 
Stoker (1957, p. 210), for example, shows that, in the case of water waves on 
a running stream, the velocity potential has no steady limit and, in fact, it 
becomes indefinitely large everywhere as t > 00 if the stream is critical. Stoker 
infers from this that the assumption of small disturbances breaks down for 
critical flow and that nonlinear effects are required to remove the singular be- 
haviour. A second example is the failure of linearized irrotational gasdynamics 
as the Mach number approaches unity. The resolution of the singularity at sonic 
conditions may be resolved by consideration of nonlinear effects. 

It appears that the resolution of the present dilemma also requires that non- 
linear effects be accounted for. We begin by noting that a solution valid for 
all co is t o  be found by adding another term to the expansion previously assumed 
so that 

with a similar expansion for I?. 
One then finds that 

NO, = 0, e,(o) = o0(q = o (9) 

and, provided that one choosesff, = wlhz, where @,is a constant to be determined, 
8, is determined by 

} (10) 
MO, = w,.pv-yo,e: - o;e;) - ~y-2w--20~(2w--lrsr~)’}, 

O,(O)  = 0, O , ( l )  = --+W(l). 

When the flow is not critical only the trivial solution is possible for O,, and the 
problem for 8, is as before and has an acceptable solution. For critical flows an 
eigenfunction solution for 0, is possible. With such a 8,, a second solution to the 
equation Mv = 0 is 

The solution for B,, apart from an eigenfunction, is 
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The boundary condition at y = 0 is satisfied and imposition of the condition at 
y = 1 fixes the constant w1 to be 

provided that the denominator is non-zero. 
It should be noted that the 6* term added t o  @ is unique among the class of 

fractional powers of 6, in that it is the only term allowing a solution for 8,. 
Thus a solution has been found that holds for all co. The extra term added to 

the original expansion enters only for co = 0, and does not appear for c o +  0. 
The limit of the solution proposed, then, is singular as c,, -+ 0. I n  fact, since the 
solution 8, for co =+ 0 is 

@l(Y) = - +(Wl) /W)  4Y), (12) 

where u(y) is the solution of Mzc = 0 that vanishes at y = 0, it  is clear that the 
solution (12) breaksdown for u( 1) = O(6).  Since u( 1) = O(co) as c,, --f 0, the solution 
thus fails for co = 0(6) ,  and we expect nonlinear effects to come into play in 
determining the time evolution of the wave, thus forming a smooth transition 
from co + 0 to the critical condition. 

Before considering nonlinear effects in both near-critical and non-critical flows, 
it should be noted that, for solid-body rotation and constant axial velocity, 
w1 = 03. As has been noted earlier (Benjamin 1967; Leibovich 1970) this case is 
also peculiar in not permitting waves of permanent form. The blocking behaviour 
a t  the critical condition found by Chow (1969) for solid-body rotation is probably 
related to the singular behaviour for w1 in this case. 

4. Nonlinear effects in inviscid fluids 
Our purpose in this section is to obtain equations capable of an asymptotic 

description of the modifications to the waves of the previous section as E ,  6, a + 0 
in inviscid fluids. Weak viscous effects are discussed in the following section. 

Although the nonlinear and wall interaction perturbations represented by E ,  

a and 6 are negligible for limited times, their cumulative effects determine the 
nature of the disturbance for long times. The multiple-time-scale perturbation 
methods used are now standard, and the simplest variant (which we employ 
here) is described by Benney (1966). It is convenient to treat the critical and 
non-critical case separately. 

The dependent variables are formally expanded in the form (suggested by 
the boundary condition (3) and the considerations of the previous section) : 

(i) for non-critical flows, 

II. = W d y  +s$,(y) A(x, t ;  E ;  a; 6 )  +68,h(x) + ~ ~ q 5 ~ & 4 ~ +  qh2A, 
0 
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(ii) for critical flows, 

+ 0334, f A  + ea64(4, - 43) f x I 2 A  dz + O ( d )  + O(s26*) + 0(e3), (14) 

with similar expansions for the appropriate F's (with yi replacing $i, and Q, 
replacing 6J. Integration by parts is used in deriving the necessary expansions, 
and the smallness of a is crucial to the separation-of-variables procedure used 
here. For example, terms like 

are encountered, and replaced by 
9 3  J h*z dz 

93[hA - ahx J A dz + O ( U ~ ) ] ,  
and similarly (from (6)) 

a - [ $ 3 J h ~ , d ~ ]  = - c o # 3 [ h ~ z - a h z ~  + 0 ( ~ 2 ) 1 .  
at 

In (13) and (14) the third-order terms sa6 and east are retained, but no other 
third-order terms are considered. This is valid only if 8 < a, and if 6 or 84 is small 
compared with a. We concentrate upon this case, because it yields the simplest 
expression of geometric effects upon the wave motion. For the form of the 
complete third-order equations, see Randall (1972). We note that cubic terms, 
independent of 8 (e.g. cY3), result in adjustments of the support flow and do not 
influence the wave propagation to third order. 

With the expansions (13) and (14) there must be associated the equations 

A, = - c ~ A ~ + E [ c ~ A A ~ + c ~ A ~ ]  +6c,hAS+a&4AhX (15) 

and (16) 

which permit solutions to be found for the q$ and Oi. Substitution of (13) and 
(15) or (14) and (16) into the governing equations (1) produces a sequence of 
ordinary differential equations for the various q+ and 0, of the form 

A, = €[el AA, + c ~ A , ~ ~ ]  + 6k3fA2 + G4olc4Afz, 

and 

The solution for 19~ satisfying the appropriate boundary conditions, which 
are found from (2) and (3), is given by ( 1 0 ~ )  and the corresponding solvability 
constant w1 is given by (I 1). Higher order 8's may be found in a similar way. Since 
they are not required for discussion of wave propagation t o  the order considered, 
we shall not give them further consideration. The constants ci, i 2 1, appearing 
in (15), (16) and (17) are given by functionals of # k  and O,, k < i. These formulae, 
and equations for determining dl and $2, are given by Leibovich (1970). The 
functions q58 and 5b4 are new and F3, F,, the required boundary conditions and the 
desired functionals for c3 and c4 are given in the appendix. 
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5. Modifications for weak viscous effects 
The modifications required to incorporate weak viscosity in the cylindrical 

case 6 = 0 have been considered elsewhere (Leibovich & Randall 1971). In  that 
treatment, viscous effects were assumed to act only upon the perturbations to 
the cylindrical support flow. For a truly parallel laminar flow, vanishing of the 
viscous terms requires that the axial velocity profile be parabolic (in v )  and the 
swirl be a combination of solid-body rotation and a potential vortex. This is 
not typical of concentrated vortices, and we wish our results to apply to a wider 
class of support flows. We wish, however, to continue t o  neglect the viscous terms 
8,iig(yW’)” and 4PgS” that occur in (I), and also to ignore boundary-layer de- 
velopment along the tube walls due to the passage of the wave. The first question 
is analogous to application of the Orr-Somerfeld equation to not-quite-parallel 
flows. There are two ways in which it appears that this is a valid procedure in our 
case (which requires a different justification from that used in stability theory). 

(i) When one considers a, wave nearly stationary with respect to the wall, it 
would seem reasonable that small viscous effects due t o  the wave perturbations 
will be important as t --f 00, but changes due to the discarded terms are of im- 
portance only if the wave propagates over distances comparable with ZIP. 

(ii) If the support flow is turbulent, the discarded terms could be balanced by 
turbulent Reynolds stresses, while the dissipative effects upon the wave are 
assumed to be incorporated in a (constant) eddy viscosity. 

The second approach has been used by Miles (1959, p. 571). 
Neglect of the boundary layer caused by the wave is discussed by Leibovich & 

Randall (1971)) wherc it is argued that this is permissible providing that 

6 G (VeIVrn) ( v n & l w ) %  

where Y, is the eddy viscosity and v, the molecular viscosity. In  the turbulent 
case ,ii should be based upon v,. 

Inclusion of the viscous contribution to the equation (either (15) or (16)) for 
A is of importance only for times of O ( , W ) .  In the non-critical case, the wave 
propagates a distance comparable with c,,l/tZ during such a time interval. Under 
these circumstances the remark (i) above, which contemplates propagation over 
distances small coinpared with Z/,ii, could not apply. Consequently, we shall not 
consider dissipation effects in non-critical flows, although they may be of 
significance in the critical case. 

With this preface, we carry over the results of the cylindrical viscous analysis 
(Leibovich & Randall 1971) only to the case of propagation on critical flows. 
This requires the addition of the term e,iZq55(y) / A  dz to (14) and the term ,k5 A 
to the right-hand side of (16). The problem for #5  and the formula determining c5 
are given in the paper cited above. (Replace the subscript 3 in that paper by 5 
in order to transform to the notation used here.) We then have equation (15) 
for non-critical flows and, upon noting (see appendix) that cs = c4 = c1 for critical 
flows only, we have 

for critical flows. 
A,  = E[c,AAz+c,A,,,I +S. tC , ( fA ) ,+C, , i iA  (18) 
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For the remainder of this paper, only non-critical flows will be treated. The 
critical case is considered in the companion paper. 

6. Amplification and decay in non-critical flow 

scaled co-ordinates 
Equation (15) may be put in a more convenient form by transforming to the 

- t ,  T = et 
2; dz 

co - Sc3h(az) 

and introducing the functions 

where h, = h(X,, To), X ,  and To being arbitrary reference values, and 

If this is done (15) is replaced by 

A,, = hAA,+PA,X,+pA (21) 

to the same order of accuracy. 
The coefficients A, /3 and p in (21) are slowly varying functions of X and T. 

Equation (21) is in precisely the form found by Kakutani (1971), his equation 
(3.10‘). An alternative to (21) may be obtained by regarding X and z as inde- 
pendent variables, in which case the form obtained may be identified with 
Kakutani’s equation (3.10). 

Consideration of the equation obtained from (19) by replacing A, ,8 and p by 
constants shows that ,u > 0 leads to amplification, while p < 0 Ieads to damping 
of the disturbance (Leibovich & Randall 1971). The damped solution for -,u 
small is given by Ot t  & Sudan (1970), and will be reported on by the present 
authors elsewhere for -,u not small. 

The amplifying case of ,u positive and ,uT % 1 yields a very simple closed-form 
similarity solution, which is taken up in the next section. 

7. Terminal similarity : a nonlinear ‘Green’s law ’ 
Infinitesimal waves of extreme length are described by linearizing (21) and 

setting /3 = 0. (Finite @ accounts for the finite, but long, length scale of the 
disturbance: although our derivation started by fixing this length scale to be of 
O(e4) in order to retain dispersive effects, we could have rescaled to describe the 
situation above.) This leads to  

A ,  = P A ,  (22) 

or 
co - c3 6ho 

A = A ,  exp ( / p d T )  = A ,  

It will now be shown that, if nonlinear and dispersive effects are retained, (21) 
predicts a more rapid growth (or decay) than (22). It may be inferred from an 
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obvious modification of the results of Leibovich & Randall (1971) that (if h 4 0, 
p =+ 0, but both constant) the momentum and energy of the entire wave train 
grows or decays like that of the linearizedsystem. That individual waves amplify 
according to a modified rule seems at  first sight; surprising, but is explicable by 
the nonlinear dispersive tendency to  form solitons with the consequent con- 
centration of wave momentum and energy. 

For shallow-water wave propagation, Kakutani (197 I)  derives a coefficient 

,/,& = - @[logH(X, T)]/8!2‘, (23) 

where H (our notation) is the local depth from the bottom to the mean water 
line. For this case, A represents the vertical displacement of the free surface 
from its undisturbed position; from (22) and (23) the result 

A = A,(HO/H)i (234 

is obtained for infinitesimal waves. This is known as ‘Green’s law’ (Lamb 1932, 
§ 185). 

Numerical solutions to (21) for constant coefficients suggest use of the trans- 

(24 a) 
formation 

where G is to remain of O( I )  for large T ,  and 

A = a(X, T )  G(r, TI, 

‘I‘ [m] ah ( X + i h  

a = aoexp ( j p d T ) .  

The co-ordinate q is locally the same as the solitary-wave similarity variable of 
the Korteweg-de Vries equation. It depends upon the slowly varying parameters 
p and h of equation (21), and upon the local amplitude a(X, T). The amplitude a, 
in turn, is assumed to depend upon the functionp which is to be determined, and 
which is assumed to vary slowly with X and T.  

We substitute (23)-(25) in (21), and regard the slowly varying functions A, /I, 
f i  and p as constants, to obtain 

For T large and ,u positive, we expect a to be large; if this is true, then an 
expansion of the form 

m 

k=O 
G = a-@Gk(q) 

is appropriate. The subsequent details are straightforward and are omitted here. 
It is found that 

G = sech2 7 + (12p)4 (ha)-g (tanh 7 + 1 + sech2 7[27 - 3 + (r2 + 37 - 1) 

x tanh 7/11 + O(a-9) (27) 
and that the relation P = $P (28) 

is required to allow G, to remain bounded. Thus from (28) and (20) 
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For the water wave case 
a = a 0 ( H 0 / H ) f 7  

which may be contrasted with the linear Green’s law (23a). 
We have carried out computer calculations for equation (21) with h = 6, 

/3 = 1 and ,u = 1 to assess the validity of the terminal similarity solution. The 
results of this work, together with a more detailed description of the terminal 
similarity solution, will be presented elsewhere. We summarize our findings 
below. 

(i) With positive initial conditions, equation (21) produced exactly the same 
number of solitons as does the Korteweg-de Vries (K dV) equation (p = 0) ; initial 
conditions leading to 1, 2 and 5 solitons were chosen. 

(ii) Each emerging wave was well fitted by the Korteweg-de Vries solitary- 
wave shape. 

(iii) For these solutions, the $p amplification law was rapidly established for 
each soliton: the trajectories of the solitons followed those of KdV solitons with 
current amplitudes given by (25). 

(iv) The amplitude a, in (25) was determined by extrapolating to zero time 
terminal similarity behaviour that emerged from the numerical calculations: 
the deviation of a, from the amplitude of the corresponding Korteweg-de Vries 
soliton was less than the expected numerical errors. 

(v) An almost flat shelf agreeing well in magnitude with that predicted from 
(27) joined the separating solitons. The last shelf ended in the small-scale 
oscillations typical of K dV solutions emerging from most initial conditions 
(Gardner et al. 1967; Zabusky 1968). The shelf was strongly reminiscent of the 
reflected wave reported by Peregrine (1967) and Madsen & Mei (1969). 

(vi) Initial conditions with both positive and negative portions may or may 
not lead to soliton formation depending upon the arrangement of the initial data. 

The total increase in amplitude of a given initial distribution consists of the 
establishment of the amplitudes a, for each emerging soliton as well as amplifica- 
tion with rate determined by $p. I n  general, a, is different from the amplitudes 
of local maxima in the initial data. 

We do not attempt a quantitative comparison of the ‘nonlinear Green’s law’ 
with other solutions of the shallow-water wave equations. The comparison is 
made difficult since the overall increase in amplitude, as we have noted, depends 
upon the form of the initial data. Qualitatively, however, we believe the present 
results agree with others. For example, Madsen & Mei (1969) report exponents 
in Green’s law that differ from the 0.25 linear value; these range from 0.19 to 
0.47 in the experiments of Ippen & Kulin (1955) and from 0.15 to 0.30 for their 
own calculations. The figure 0.33 in our result (30) is not inconsistent with the 
values quoted, particularly since we expect an overall amplification to fluctuate 
depending upon the initial conditions. 

Thia; work was supported by NASA Grant NGL-33-010-042, monitored by the 
Lewis Research Center. 
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Appendix 
The equations for #3 and #4 for non-critical flows are 

Lq53 = F3 = c3-wy;co)+ ( w - c , ) - ~ q 5 ~ { ~ ; ( ~ ( y ; c o ~ - ~ ~ y ; ~ ) ~ - ~ ’ ~ y ; ~ ) ~ 1 )  

+ ~ o ~ - ~ ( w - c o ) - ~ ~ c o r s r ~  w - y ~ - ~ ~ ) - 1 e ; -  eI[w-~rsr;]’~ (A 1) 

A64 = F4 = ~ 4 ~ ~ ~ ~ ~ 0 ~ + ~ ~ - ~ 0 ~ - 1 ~ 1 { q 5 ~ ~ ~ ~ Y / ; ~ ~ - ~ ~ y ; ~ o ~ l - ~ ‘ ~ y ; ~ 0 ~ q 5 , }  

-~ ,y- -2(w-co)-2{cors r :~~ w-l(w-CO)-~+~,[(w-CO)-l rSr:y} 
+ C O ( W - C ~ ) - ~ [ ~ ~ ( ~ ; C O ) # ~ - ~ ~ I ,  (A 2) 

and 

where 

and 

~ ( 9 ;  c,) = ~ 2 ~ - 2 (  w - c0)-3 rs r:, - ( w - c o y  w7 +, 
P(Y;  G o )  = y-2( w - c0)-2 rs r; - ( w -c0)-l w”. 

563(0) = $4(0) = 0 

#3(1-) = q54(1) = -#A( l ) .  

$j = $Jj+y(b; ( j  = 3,4).  (A 3) 

The boundary conditions are 

and 

The latter conditions may be replaced by homogeneous ones if we put 

In  critical flows, one should replace O1 by 0, = Qo, put c, = 0 in these equations, 
and replace the above boundary conditions by 

$J3(0) = q54(0) = 4 3 ( 1 )  = q54(1) = 0. 

It is noted that, in critical flows, the problems for #3 and +4 are identical to each 
other and to the problem for q51. 

The constants c3 and c, in non-critical flow are determined by orthogonality 
conditions 

required in order that the problems for $3 and $4 have solutions. Here the 4 are 
obtained from (A 1) and (A 2) after the substitution of (A 3). 

In  critical flows, one should replace 4. in (A 4) by 4. This shows that c3 = c4 = cl. 
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